Likelihood-Based Naive Credal Classifier
نویسندگان
چکیده
Bayesian Classifiers Learn joint distribution P(C,F) Assign to f the most probable class label argmaxc′∈C P(c′, f̃) This defines a classifier, i.e., a map: (F1× . . .×Fm)→ C Credal Classifiers Learn joint credal set P(C,F) Set of optimal classes (e.g., according to maximality ) {c′ ∈ C |@c′′ ∈ C ,∀P ∈ P : P(c′′|f̃) > P(c′|f̃)} This defines a credal classifier, i.e., (F1× . . .×Fm)→ 2 May return more than a single class label! Credal Classifiers (CCs)
منابع مشابه
Reliable diagnoses of dementia by the naive credal classifier inferred from incomplete cognitive data
Dementia is a serious personal, medical and social problem. Recent research indicates early and accurate diagnoses as the key to effectively cope with it. No definitive cure is available but in some cases when the impairment is still mild the disease can be contained. This paper describes a diagnostic tool that jointly uses the naive credal classifier and the most widely used computerized syste...
متن کاملActive Learning by the Naive Credal Classifier
In standard classification a training set of supervised instances is given. In a more general setup, some supervised instances are available, while further ones should be chosen from an unsupervised set and then annotated. As the annotation step is costly, active learning algorithms are used to select which instances to annotate to maximally increase the classification performance while annotat...
متن کاملNaive Credal Classifier 2: a robust approach to classification for small and incomplete data sets
Naive Credal Classifier, which is an imprecise-probability counterpart of Naive Bayes, is rigorously extended to a very general and flexible treatment of incomplete data, yielding a new classifier called Naive Credal Classifier 2 (NCC2). The new classifier delivers classifications that are robust to the presence of small sample sizes and missing values. In particular, some empirical evaluations...
متن کاملThe multilabel naive credal classifier
We present a credal classifier for multilabel data. The model generalizes the naive credal classifier to the multilabel case. An imprecise-probabilistic quantification is achieved by means of the imprecise Dirichlet model in its global formulation. A polynomial-time algorithm to compute whether or not a label is optimal according to the maximality criterion is derived. Experimental results show...
متن کاملTree-Based Credal Networks for Classification
Bayesian networks are models for uncertain reasoning which are achieving a growing importance also for the data mining task of classification. Credal networks extend Bayesian nets to sets of distributions, or credal sets. This paper extends a state-of-the-art Bayesian net for classification, called tree-augmented naive Bayes classifier, to credal sets originated from probability intervals. This...
متن کامل